
An XML-Based Platform for Semantic Transformation
of Numerical Programs

Paul D. Hovland, Uwe Naumann, Boyana Norris
Mathematics and Computer Science Division

Argonne National Laboratory
9700 S. Cass Avenue

Argonne, IL 60439-4844
email: [hovland,naumann,norris]@mcs.anl.gov

ABSTRACT
We describe a simple component architecture for the devel-
opment of tools for mathematically based semantic trans-
formations of scientific software. This architecture con-
sists of compiler-based, language-specific front- and back-
ends for source transformation, loosely coupled with one or
more language-independent “plug-in” transformation mod-
ules. The coupling mechanism between the front- and
back-ends and transformation modules is provided by the
XML Abstract Interface Form (XAIF). XAIF provides an
abstract, language-independent representation of language
constructs common in imperative languages, such as C and
Fortran. We describe the use of this architecture in the con-
struction of tools for automatic differentiation (AD) of pro-
grams written in Fortran 77 and ANSI C. The XAIF is par-
ticularly well suited for performing the source transforma-
tions needed for AD. Differentiation modules typically op-
erate within the scope of statements or basic blocks, work-
ing at a level where procedural languages are very sim-
ilar. Thus, it is possible to specify a common interface
format for mathematically-based semantic transformations
that need not represent the union of all languages.

KEY WORDS
source transformation, intermediate representation, auto-
matic differentiation

1 Introduction

We describe an architecture for mathematically based se-
mantic transformations of scientific applications. The main
goal of this architecture is to allow the development of
source transformation algorithms independent of the source
language. The implementation of such an algorithm can be
used as a “plug-in” module for a language-dependent front-
end.

The mechanism connecting the components of this
architecture is the XML Abstract Interface Form (XAIF).
XAIF provides a language-independent representation of
constructs common in imperative languages, such as C and
Fortran. The main role of the XAIF is to define a layer of
abstraction, so that various transformation algorithms can

T
ra

ns
fo

rm
at

io
n

M
od

ul
e

 and Analysis
Canonicalization

Analysis
Fragment Decomposition

intermediate representation

Parser

Original code

Transformation

Unparser

Transformed code

Transformed code fragment

XAIF Unparser

Code fragment in XAIF graph

Transformed code fragment in XAIFgraph

Figure 1. The Source Transformation Process.

be expressed in a language-neutral manner.
Figure 1 illustrates some of the possible steps in-

volved in systems for mathematically-based source trans-
formation. First, the original source code is parsed by
the language-specific front-end. During the canonicaliza-
tion and language-specific analysis phase, the front-end
transforms the code to a semantically equivalent simpli-
fied form. In addition, high-level information may be gath-
ered, such as the determination of the objects to be trans-
formed or the granularity of code fragments to be trans-
formed. The front-end collects code fragments, which may
range from single statements to basic blocks to entire sub-
routines, and passes them to the XAIF-based transforma-
tion module. The transformation module then operates on
the intermediate representation.

The module may work in several stages, including
analysis to gather information about the objects to be trans-
formed; fragment decomposition, or breaking up expres-
sions into binary and unary operations; high-level transfor-
mations, which may specify templated algorithmic opera-
tions to be performed instead of transforming at the basic

operator level; and finally, tool-specific instantiation, such
as calls to a subroutine library or inlined code. These stages
are discussed in more detail in the context of automatic dif-
ferentiation tools (Section 3).

The back-end (which may be part of the front-end)
accepts the XAIF representing transformed fragments of
the program and merges it back into the overall program
structure, finally unparsing it to the original language.

We have identified the following issues in defining
the interface between source transformation modules and
language-specific front-ends:

Granularity. Different types of source transforma-
tions may operate at different code granularities. For
example, some of the automatic differentiation mod-
ules described in this paper transform single state-
ments, whereas others may require basic blocks or
even coarser-grained structures as input. The interme-
diate representation must be flexible enough to accom-
modate the needs of existing as well as future mod-
ules.

Mixed strategies. The intermediate representation
must enable the application of different transforma-
tion strategies on different portions of the code.

Efficient intermediate code analysis and transforma-
tion. Most AD algorithms for generating robust and
efficient derivative code use elements from data flow
analysis and standard graph algorithms developed for
a variety of closely related problems including modern
compiler technology [1, 2] and graph algorithms [3].
The XAIF should enable reuse of most of the available
algorithms, thus avoiding unnecessary “re-inventions
of the wheel”.

Abstraction away from language specifics. Our goal
is not to define an abstract intermediate representation
that comprises the union of all supported languages;
instead, we must identify the subset of features occur-
ing in portions of source code that correspond to math-
ematical operations. We provide abstractions of com-
mon constructs and rely on the front-end to provide
mappings to and from language-specific constructs.
Keeping the representation as simple as possible not
only makes tool development easier, but it may also
make it possible to perform optimizations that would
be infeasible if the representation is complicated by
language-dependent details.

Extensibility. The intermediate format should be ex-
tensible in order to support various modules, which
may define or require new features.

Syntax. The syntax should be simple, yet flexible
enough to represent program structure at multiple lev-
els. Furthermore, the syntax should be easy to parse
and validate.

The rest of this paper is organized as follows. Sec-
tion 2 contains an introductory overview of automatic dif-
ferentiation. Section 3 discusses the software architecture
used in the construction of tools for automatic differenti-
ation. Section 4 gives a brief overview of XAIF features
and design. Section 5 presents the use of the XAIF in the
automatic differentiation of a simple example. Section 6
summarizes our contributions.

2 Automatic Differentiation

Automatic differentiation (AD) transforms numerical pro-
grams for evaluating vector functions

with inputs and outputs into new programs that
compute derivatives of (some of) the outputs with respect
to (some of) the inputs. Dating back to 1964 [4], AD has
been developed over the years [5, 6, 7] to become an estab-
lished tool for performing a well-defined set of semantic
transformations on numerical programs. Most of the math-
ematical theory behind AD algorithms is covered in [8].
The research leading to this paper has been motivated by
the large number of general source transformation issues
related to AD.

Without going into much mathematical detail, let us
briefly introduce the main concepts behind AD. For a given
set of input values, the steps performed by the program can
be represented as a directed acyclic computational graph.
The structure of this graph can be determined at compile
time for control-flow-independent parts of the program,
such as single statements or basic blocks [9]. AD ex-
ploits the fact that expressions for the local partial deriva-
tives with respect to the operands can be generated for all
elementary arithmetic operations () and intrinsic
functions (). For example, it is well known that

, , , ,

, , etc. .
The forward and reverse modes of AD generate ex-

pressions for all local partial derivatives and exploit the
chain rule to propagate Jacobian times matrix (forward-
mode) or Jacobian transposed times matrix (reverse-mode)
products. The Jacobian matrix contains the partial deriva-
tives of a subset of the outputs (the dependent variables)
with respect to a subset of the inputs (the independent vari-
ables). Intermediate variables that depend on some inde-
pendent variable, and upon which some dependent variable
depends, are called active.

Forward-mode AD transforms the original code so
that one or more directional derivatives are propagated for-
ward for all active variables These values are equal to
the inner product of the gradient of with respect to the
independent variables and some direction vector. Thus, the
whole Jacobian can be accumulated by letting these direc-
tions range over the Cartesian basis vectors in

In reverse mode the semantics of the program is
changed to propagate adjoints backward for all active vari-
ables. The adjoint of an active intermediate variable is

equal to the inner product of some normal vector times the
vector containing the partial derivatives of the dependent
variables with respect to Consequently, the whole Ja-
cobian can be accumulated by letting these normals range
over the Cartesian basis vectors in

Forward and reverse modes are two fundamental rep-
resentatives out of a large set of AD-related semantic
transformation of numerical programs. Optimal statement
and basic-block level pre-accumulation techniques [10],
higher-order derivatives [11], and derivatives of programs
exploiting parallelism [12], to name only a few more ad-
vanced AD techniques, require highly sophisticated and ex-
tremely flexible source transformation platforms. The aim
of the XAIF is to provide a quasi standard for the fast im-
plementation of well-known and new AD algorithms and
other mathematically-based semantic transformations, and
thus help make them applicable a large variety of real-
world problems implemented as numerical programs writ-
ten in arbitrary imperative programming languages.

3 Construction of Tools for Automatic Dif-
ferentiation

AD systems such as ADIFOR (for Fortran code) [13] and
ADIC (for C code) [14] use compiler techniques to aug-
ment source code with statements for computing deriva-
tives. One motivation for this source transformation ap-
proach is that it enables the tool to perform analyses, pos-
sibly interprocedural, at compile time to reduce the cost of
computing derivatives. This provides a performance advan-
tage over AD tools that use operator overloading to prop-
agate derivatives. Robust source transformation tools are,
however, considerably more difficult to implement because
they require a language-specific infrastructure for parsing,
analysis, canonicalization, optimization, and unparsing.

Early AD tools have been built in a monolithic fash-
ion, without regard for reusing parts with common func-
tionality. It is possible, however, to decouple the devel-
opment of algorithms that exploit the chain rule from the
infrastructure that deals with the language and the user in-
terface. This decoupling leads to a software architecture
for semantic transformation tools, in which loosely con-
nected components communicate through an abstract inter-
face. Defining a language-independent interface suitable
for tools for automatic differentiation and similar types of
semantic transformation is simpler than the general case of
source transformation, since the transformations occur at
a level where most imperative languages are semantically
equivalent.

Figure 2 illustrates the roles of the front and back-
ends and transformation components in the semantic trans-
formation process. The front-end is responsible for several
tasks:

Parsing the source code and building the language-
dependent intermediate representation.

Canonicalizing the language-dependent intermediate
representation. In the code canonicalization stage,
code is rewritten into a standard form. For example,
function calls appearing within conditional tests are
hoisted into assignments to new temporary variables.

Performing any necessary analyses, for example, de-
termining which variables are active and thus need to
have derivative objects associated with them. During
this stage, the ADIFOR preprocessor applies interpro-
cedural analysis techniques to determine which vari-
ables in a code fragment are active.

Producing the language-independent XAIF represen-
tation. Portions of the language-dependent internal
representation are translated into XAIF.

Unparsing the transformed XAIF code back into the
source language. Derivative code is generated for each
assignment statement containing an active variable,
and derivative objects are allocated.

The plug-in AD modules are usually responsible for
three tasks:

Defining the shape and size of new (derivative) ob-
jects. The module may declare one or more derivative
objects to be associated with each active variable. The
XAIF interface also provides a mechanism for declar-
ing temporary variables.

Augmenting statements involving active variables
with derivative computations corresponding to the dif-
ferentiation method.

Specifying variable type conversions (for active vari-
ables).

In general, a series of transformations can be applied
to the intermediate representation by one or more transfor-
mation modules.

4 XAIF Overview

The XAIF defines a canonical set of constructs that repre-
sent the original program in a language-independent fash-
ion. A major challenge in defining the source transforma-
tion component interface is to identify common features in
imperative languages such as C and Fortran. Representing
these commonalities in an abstract fashion makes it possi-
ble to apply the same transformation algorithm in all sup-
ported languages.

The precursor to the XAIF, generically referred
to as the Automatic differentiation Intermediate Format
(AIF) [15], is a tree-based representation, with no support
for call graph or control flow information. Furthermore, the
different language-dependent front-ends that generate the
AIF use different syntax. For example, the notation used
by ADIFOR is based on functional programming, so the
intermediate representation is generated in the functional

Internal Representation

Static Analyses
Annotation

Intermediate Code Optimization

Lexical Analysis
Syntax Analysis
Canonicalization

Unparsing

Existing
ADIC, ADIFOR, DAEPACK, TAPENADE,...

and new AD tools

AD Modules

Other semantic transformations

Convex Underestimates

Interval Extensions

Hessians

Reverse Mode

Forward Mode

...

...

XAIF

Figure 2. Role of XAIF

programming language Scheme. ADIC uses a custom text-
based representation, with additional parsing and unparsing
support. While the intermediate representation generated
by both tools is semantically equivalent, transformation
modules must translate between formats in order to oper-
ate with both front-ends. Our experience indicates that it is
hard to ensure that all tool developers conform to the same
custom-defined syntax for the intermediate form. While al-
lowing different syntax for the intermediate representation
provides flexibility for the language-dependent front-ends,
the lack of a shared syntax makes using the same plug-in
module with both tools problematic. A translator can be
used to convert between formats; however, this solution is
not scalable and complicates validation. Furthermore, the
implementation of the module must be updated each time
a tool introduces different syntax (without modifying the
semantics).

XAIF decouples the language-specific portions of
the source transformation process from the language-
independent transformation algorithms. This approach pro-
vides several benefits:

Language independence. XAIF is an encapsulation of
the operations relevant to semantic transformation of
scientific software. We want to avoid trying to find an
abstract representation of non-AD–specific features of
each language, such as side-effects and pointer track-
ing in C and C++.

Tool independence. We want to be able to write each
transformation module once and have it work with
multiple tools without modification. For example,

we have developed a second-order derivative (Hes-
sian) module that works with both ADIC and ADI-
FOR; it can also be plugged into any tool that meets
the XAIF specifications. Widely available validating
XML parsers provide further flexibility in parsing and
generating the intermediate form.

Implementation independence. The language-specific
front-end does not need to know the details of how
the derivative augmentation is performed or what the
derivative objects look like. Conversely, the AD mod-
ule does not need to know how variables are declared
or how derivative objects are associated with active
variables. The components of the AD system can be
changed, either subtly or radically, without requiring
that other system components be modified.

Rapid development of new algorithms. The XAIF
component architecture provides a “workbench” for
easily and rapidly implementing new algorithms. This
capability has proved valuable with the Hessian mod-
ule, where the most efficient algorithm was not known
a priori. A number of different algorithms were
quickly implemented for comparison. Also, this en-
abled straightforward experimentation with mixing
different differentiation modes, which has produced
more efficient derivative code in some cases.

We have selected XML [16, 17] for the abstract in-
termediate representation in part to remedy this problem.
XML offers the following benefits in the context of AD
tool development:

Standard interface. XML is a W3C-endorsed stan-
dard for document markup that is flexible enough to
provide the infrastructure for component coupling de-
scribed in this paper.

Widely available validating parsers. When creating
new modules, developers do not need to implement
a parser for processing the intermediate format from
scratch; the general availability of XML parsers has
simplified the task of parsing and producing XAIF.
We implement the semantics of the XAIF by defining
a schema, which can be used by a validating parser
to ensure that the intermediate representation passed
between components is valid.

Extensibility. The X in XML stands for extensible.
XML is a meta-markup language. It doesn’t have a
fixed set of tags and elements; instead, XML enables
users to define needed elements and the relationships
between them. The language can be extended and
adapted to meet different needs, some of which can-
not be anticipated at the time a tool is developed. The
XAIF schema allows future extensions to accommo-
date new types of transformation such as the genera-
tion of interval extensions [18] or convex underesti-
mates [19].

The XAIF representation consists of a series of nested
graphs. All graph elements are of type GraphType,
whose definition is similar to the XGMML notion of
a graph [20]. All elements of GraphType contain at
least one element of VertexType and zero or more el-
ements of EdgeType. All elements of VertexType
have identifiers that are unique within the parent graph
element. Edges have unique identifiers, as well as key
references to source and target vertices. At the high-
est level, the program is represented by a CallGraph
element, whose children are vertices corresponding to
subroutines and edges signifying subroutine calls. Each
CallGraph vertex contains a ControlFlowGraph el-
ement, whose vertices and edges represent the control
flow of the program. A ControlFlowVertex can
contain a BasicBlockGraph, a ForLoopGraph, an
IfConditionGraph, or, in general, any statement that
affects the flow of control in the computation. At the bot-
tom of the hierarchy are ExpressionGraph and symbol
reference elements. SymbolTable elements can be chil-
dren of any graph element and contain symbol information
for the corresponding scope.

Additional information on the XAIF, including
the schema definition and an example, is available at
www.mcs.anl.gov/xaif.

5 Example

In this section we show how the XAIF is used in the au-
tomatic differentiation of the C code shown in Figure 3.
The complete example, including the XAIF for the original

and transformed source code, is available at the XAIF web
page.

void head(double x, double y) {
int i;
for (i=1;i<10;i++) {

compute(x,y);
if (y<0) exit;

}
}

void compute(double x, double y) {
double h;
h=exp(x*x*x);
y=sin(h*x);

}

Figure 3. Original source code.

5.1 XAIF of Original Program

In XAIF, a program is represented as a hierarchy of directed
graphs, as shown in Figure 4. The call graph consists of
two vertices representing the two subroutines head and
compute (see Figure 5). The call of compute inside
head is represented by the edge connecting these vertices.

The control flow graph of head (Figure 6) contains
three vertices in addition to the standard entry and exit
vertices. If the for-loop condition is satisfied, the loop
body gets executed. Otherwise, the program is continued
with the first statement following the loop. In this exam-
ple no statement follows the loop, which results in an edge
leading into the exit vertex.

The first statement inside the loop body is the call of
compute followed by an if-statement. Depending on the
value of the test, the loop is exited or the next statement in
the loop body is executed. As the if-statement happens to
be the last statement of the loop body, this is equivalent to
jumping back to the head of the loop.

The control flow inside compute is straightforward.
It consists of a single basic block in addition to entry
and exit. After canonicalization (performed by the

exit

if (y<0)

compute(x,y)

for (i=0;i<10;i++)

entry

entry

exit

t1

exp

t1

h

h x

*

t2 y

sin

t2

*

*

x

Figure 4. XAIF Graph Hierarchy

<?xml version="1.0" encoding="UTF-8"?>
<xaif:CallGraph ... >

<xaif:CallGraphProperties>
...

</xaif:CallGraphProperties>
<xaif:SymbolTable>

...
</xaif:SymbolTable>

<!-- head(double x, double y) -->
<xaif:CallGraphVertex id="0" symbolId="head">

...
</xaif:CallGraphVertex>

<!-- void compute(double x, double y) -->
<xaif:CallGraphVertex id="1" symbolId="compute">

...
</xaif:CallGraphVertex>

<xaif:CallGraphEdge id="0" source="0" target="1"/>

</xaif:CallGraph>

Figure 5. Call graph XAIF representation.

<xaif:ControlFlowGraph>
<xaif:ControlFlowGraphProperties>

...
</xaif:ControlFlowGraphProperties>

<xaif:SymbolTable>
...

</xaif:SymbolTable>

<xaif:ControlFlowVertex id="0" name="Entry"/>
<xaif:ControlFlowVertex id="1" name="ForLoop">...</xaif:ControlFlowVertex>
<xaif:ControlFlowVertex id="2" name="BasicBlock">...</xaif:ControlFlowVertex>
<xaif:ControlFlowVertex id="3" name="If">...</xaif:ControlFlowVertex>
<xaif:ControlFlowVertex id="4" name="Exit"/>

<xaif:ControlFlowEdge id="0" source="0" target="1"/>
<xaif:ControlFlowEdge id="1" source="1" target="4"/>
<xaif:ControlFlowEdge id="2" source="1" target="2"/>
<xaif:ControlFlowEdge id="3" source="2" target="3"/>
<xaif:ControlFlowEdge id="4" source="3" target="1"/>
<xaif:ControlFlowEdge id="5" source="3" target="4"/>

</xaif:ControlFlowGraph>

Figure 6. Control flow graph XAIF representation.

front-end), the basic block contains four assignment state-
ments, which are represented by the four vertices of the
BasicBlockGraph element shown in Figure 7.

Each AssignmentStatementGraph consists of
a variable reference representing the left-hand side and
some expression DAG representing the right-hand side, as
illustrated in Figure 8.

The minimal vertices in the expression DAGs repre-
sent variable references. All other vertices are arithmetic
operations or function calls. The value associated with the
maximal vertex is assigned to the variable referenced on the
left-hand side. Intermediate results are labeled .

5.2 XAIF of Transformed Program

In this section we describe the result of transforming the
original program semantically according to a two-step AD

algorithm:

1. Derivative code for computing the local Jacobian of
the basic block in compute is generated. Since in
this simple example there are just one independent x
and one dependent y variable, the local Jacobian con-
tains only one element which is the derivative
of y with respect to x.

2. As noted in Section 2, derivative code generated ac-
cording to the rules of forward-mode AD computes
directional derivatives of the dependent with respect
to the independent variables, that is, Jacobian matrix
times vector products. In the example, this simpli-
fies to a weighted derivative, namely, the product of

and some scalar weight ad x. The semantics
of the program is changed in order to compute this
value.

...
<xaif:BasicBlockGraph>

<xaif:BasicBlockGraphProperties>
<xaif:Property id="0" name="inloop" value="no"/>

</xaif:BasicBlockGraphProperties>

<!-- t1 = x*x*x; -->
<xaif:BasicBlockVertex id="0" name="AssignmentStatementGraph">

...
</xaif:BasicBlockVertex>

<!-- h = exp(t1); -->
<xaif:BasicBlockVertex id="1" name="AssignmentStatementGraph">

...
</xaif:BasicBlockVertex>

<!-- t2 = h*x; -->
<xaif:BasicBlockVertex id="2" name="AssignmentStatementGraph">

...
</xaif:BasicBlockVertex>

<!-- y = sin(t2); -->
<xaif:BasicBlockVertex id="3" name="AssignmentStatementGraph">

...
</xaif:BasicBlockVertex>

<!-- data flow -->
<xaif:BasicBlockEdge id="0" source="0" target="1"/>
<xaif:BasicBlockEdge id="1" source="1" target="2"/>
<xaif:BasicBlockEdge id="2" source="2" target="3"/>

</xaif:BasicBlockGraph>
...

Figure 7. Basic block graph XAIF representation.

sin 5*

4
cos(v4)

exp

3

x

2

1

*

*

x

x

x

x v10

exp(v2)

v3

Figure 9. Linearized Computational Graph

Building on the AD basics introduced in section 2 and ref-
erencing relevant literature, we briefly discuss a method for
generating optimal derivative code for the local Jacobian of
compute. The main elements of the corresponding XAIF
representation are presented in the context of the XAIF of
the forward-mode AD transformed code.

The computational graph of the basic block is shown
in Figure 9. Expressions for the local partial derivatives are
attached to the edges. Given a value for x, one can evalu-
ate these expressions during a single evaluation of the ba-
sic block in parallel with the actual function value y itself.
This results in a linearized version of the computational
graph. As shown in [21], the value of derivative
at the current argument can be accumulated by eliminating
the intermediate vertices in the linearized computational
graph (in our example,). The order in which this is
done determines the number of scalar floating-point opera-
tions required for this process. Minimizing this value over
the different elimination orderings is conjectured to be an
NP-complete combinatorial optimization problem [22, 21].

A deterministic algorithm for gradients with single-
read intermediate variables (such as the graph in our exam-

void compute_ad(double x, double ad_x,
double y, double ad_y) {

double h;
double t1, t2;
double _dy_dx_t1,_dy_dx_t2,_dy_dx_t3,_dy_dx_t4;
double _dy_dx;

t1=x*x*x;
h=exp(t1);
t2=h*x;
y=sin(t2);

_dy_dx_t1 = (x+x)*x+x*x
_dy_dx_t2 = exp(t1)
_dy_dx_t3 = _dy_dx_t1*_dy_dx_t2*x+h
_dy_dx_t4 = cos(t2)
_dy_dx = _dy_dx_t3*_dy_dx_t4

ad_y = _dy_dx * ad_x
}

Figure 10. Derivative code for the compute function.

ple) is discussed in [23]. It leads to the derivative code for
compute shown in Figure 10.

The computation of dy dx t1 corresponds to the
elimination of vertex 1 in the linearized computational
graph. Vertices 2 and 3 are eliminated by computing
dy dx t3. Finally, the elimination of vertex 4 leads to
dy dx, which represents the pre-accumulated value of

The subroutine itself is transformed into a seman-
tically different version compute ad with inputs x and
ad x and outputs y and ad y. It is straightforward to
verify that for a given argument x and a derivative weight

...
<!-- t2 = h*x; -->
<xaif:BasicBlockVertex id="2" name="AssignmentStatementGraph">

<xaif:AssignmentStatementGraph>
<xaif:VariableReferenceVertex id="0" symbolId="1_4"/>
<xaif:AssignmentRHSVertex id="1">
<xaif:ExpressionGraph>

<xaif:VariableReferenceVertex id="0" symbolId="1_3"/>
<xaif:VariableReferenceVertex id="1" symbolId="1_1"/>
<xaif:BinaryExpressionVertex id="2" name="Multiply"/>
<xaif:ExpressionEdge id="0" source="0" target="2"/>
<xaif:ExpressionEdge id="1" source="1" target="2"/>

</xaif:ExpressionGraph>
</xaif:AssignmentRHSVertex>
<xaif:AssignmentStatementEdge id="0" source="1" target="0"/>

</xaif:AssignmentStatementGraph>
</xaif:BasicBlockVertex>

<!-- y = sin(t2); -->
<xaif:BasicBlockVertex id="3" name="AssignmentStatementGraph">

<xaif:AssignmentStatementGraph>
<xaif:StatementProperties>
</xaif:StatementProperties>
<xaif:VariableReferenceVertex id="0" symbolId="1_5"/>
<xaif:AssignmentRHSVertex id="1">
<xaif:ExpressionGraph>

<xaif:SubroutineCallExpressionVertex id="0" symbolId="exp">
<xaif:SubroutineArgument>

<xaif:VariableReference symbolId="1_4"/>
</xaif:SubroutineArgument>

</xaif:SubroutineCallExpressionVertex>
</xaif:ExpressionGraph>

</xaif:AssignmentRHSVertex>
<xaif:AssignmentStatementEdge id="0" source="1" target="0"/>

</xaif:AssignmentStatementGraph>
</xaif:BasicBlockVertex>
...

Figure 8. Assignment statement graph XAIF representation.

void head_ad(double x, double ad_x, double y,
double ad_y) {

int i;
for (i=1;i<10;i++) {

compute_ad(x,ad_x,y,ad_y);
if (y<0) exit;

}
}

Figure 11. Derivative code for the head function.

ad x, compute ad computes both the function value
y and ad y—the directional derivative of y with respect
to x in direction ad x. This is what we expect from a
forward-mode AD-transformed derivative code. The XAIF
of compute ad is analogous to the one for the original
routine, with a basic block containing additional assign-
ments and several new entries in the symbol table and ar-
gument list.

The forward-mode AD version of the top-level rou-
tine head is shown in Figure 11. The control flow re-
mains unchanged: head ad calls compute ad to com-
pute both y and ad y for given x and ad x. Again,
the XAIF is analogous to the one for the head sub-
routine with the necessary changes or additions made to
the symbol table, argument list, and call to compute.
The XAIF of the entire derivative code can be found at
www.mcs.anl.gov/xaif.

6 Summary

We have presented a simple component architecture for the
development of semantic transformation tools based on the
XML Abstract Interface Form, an abstract representation
of the common features in imperative languages. XAIF
decouples the language-specific front-end, which performs
parsing, analysis, and unparsing functions, from language-
independent transformations. XAIF provides the inter-
face that enables the rapid development of plug-in seman-
tic transformation modules that interoperate with multi-
ple language-specific front-ends. We have demonstrated
the utility of this architecture in the context of automatic
differentiation, and illustrated the use of the XAIF in a
forward-mode differentiation module. Although our expe-
rience to date is focused on automatic differentiation, we
believe the XAIF architecture will naturally accommodate
other mathematically-based transformations, such as inter-
val computations.

Acknowledgments

This work was supported by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-
Eng-38.

We thank Jason Abate and Lucas Roh of Hostway,
Inc., and Alan Carle and Mike Fagan of Rice University
for their substantial contribution to the design and imple-
mentation of the original AIF. We also thank Gail Pieper
for proofreading a draft of this manuscript.

References

[1] R. Allen and K. Kennedy. Optimizing Compilers for
Modern Architectures. Morgan Kaufmann Publishers,
2002.

[2] J. Knoop. Optimal Interprocedural Program Opti-
mization. LNCS. Springer, 1998.

[3] J. Siek, L. Lee, and A. Lumsdaine. The Boost Graph
Library. Addison Wesley, 2002.

[4] R. Wengert. A simple automatic derivative evaluation
program. Communications of the ACM, 7:463–464,
1964.

[5] G. Corliss, C. Faure, A. Griewank, L. Hascoët, and
U. Naumann, editors. Automatic Differentiation of
Algorithms—From Simulation to Optimization, Lec-
ture Notes in Computer Science. Springer, 2002.

[6] M. Berz, C. Bischof, G. Corliss, and A. Griewank,
editors. Computational Differentiation: Techniques,
Applications, and Tools, Proceedings Series. SIAM,
1996.

[7] G. Corliss and A. Griewank, editors. Automatic Dif-
ferentiation: Theory, Implementation, and Applica-
tion, Proceedings Series. SIAM, 1991.

[8] Andreas Griewank. Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differentiation.
SIAM, Philadelphia, 2000.

[9] A. Aho, R. Sethi, and J. Ullman. Compilers. Princi-
ples, Techniques, and Tools. Addison-Wesley, 1986.

[10] Uwe Naumann. On optimal Jacobian accumulation
by elimination methods on the dual computational
graph. Technical Report Preprint ANL/MCS-P943-
0402, Mathematics and Computer Science Division,
Argonne National Laboratory, 2002. To appear in
Mathematical Programming.

[11] A. Griewank, J. Utke, and A. Walter. Evaluating
higher derivative tensors by forward propagation of
univariate Taylor series. Computational Mathemat-
ics, 69:1117–1130, 2000.

[12] Paul Hovland and Christian Bischof. Automatic dif-
ferentiation of message-passing parallel programs. In
Proceedings of the First Merged International Par-
allel Processing Symposium and Symposium on Par-
allel and Distributed Processing, pages 98–104, Los
Alamitos, CA, 1998. IEEE Computer Society Press.

[13] Christian Bischof, Alan Carle, Peyvand Khademi,
and Andrew Mauer. ADIFOR 2.0: Automatic dif-
ferentiation of Fortran 77 programs. IEEE Computa-
tional Science & Engineering, 3(3):18–32, 1996.

[14] Christian Bischof, Lucas Roh, and Andrew Mauer.
ADIC — An extensible automatic differentiation tool
for ANSI-C. Software–Practice and Experience,
27(12):1427–1456, 1997.

[15] AIF Developer’s Page. www-unix.mcs.anl.gov/-
autodiff/AIF.

[16] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen,
and Eve Maler, (ed.). Extensible markup lan-
guage (XML) 1.0 (second edition). W3C, 10 2000.
www.w3.org/TR/2000/REC-xml-20001006.

[17] Henry S. Thompson, David Beech, Mur-
ray Maloney, and Noah Mendelsohn, (eds.).
Xml schema part 1: Structures. W3C, 5
2001. www.w3.org/TR/2001/REC-xmlschema-
1-20010502/.

[18] E. Adams and U. Kulisch, editors. Scientific Com-
puting with Automatic Result Verification. Academic
Press, 1993.

[19] P.Barton, E. Gatzke, and J. Tolsma. Construction
of convex function relaxations using automated code
generation techniques. submitted to open literature,
2001.

[20] J. Punin and M. Krishnamoorthy. Extensible Markup
and Modeling Language (XGMML) draft specifi-
cation in the XML.org XML Standards Report.
http://www.zapthink.com/report.html, 2001.

[21] A. Griewank and S. Reese. On the calculation of Ja-
cobian matrices by the Markovitz rule. In [7], pages
126–135. SIAM, 1991.

[22] C. Bischof and M. Haghighat. Hierarchical ap-
proaches to Automatic Differentiation. In [6], pages
82–94. SIAM, 1996.

[23] Uwe Naumann. On optimal Jacobian accumulation
for computations with single use of intermediate vari-
ables. Technical Report Preprint ANL/MCS-P944-
0402, Mathematics and Computer Science Division,
Argonne National Laboratory, 2002.

